

Airport Forecasting

Prof. Richard de Neufville

Istanbul Technical University

Airport Planning and Management

Air Transportation Management

Module 07

M.Sc. Program

January 2016

Forecasting In Practice

- Objective: To present procedure.
- Topics:
 - 1. Premises
 - 2. Forecasts rely on Many Assumptions
 - 3. Basic mechanics of forecast methods
 - 4. Principles for Practice
 - 5. Recommended Procedure
 - 6. Mexico City Example
 - 7. Summary

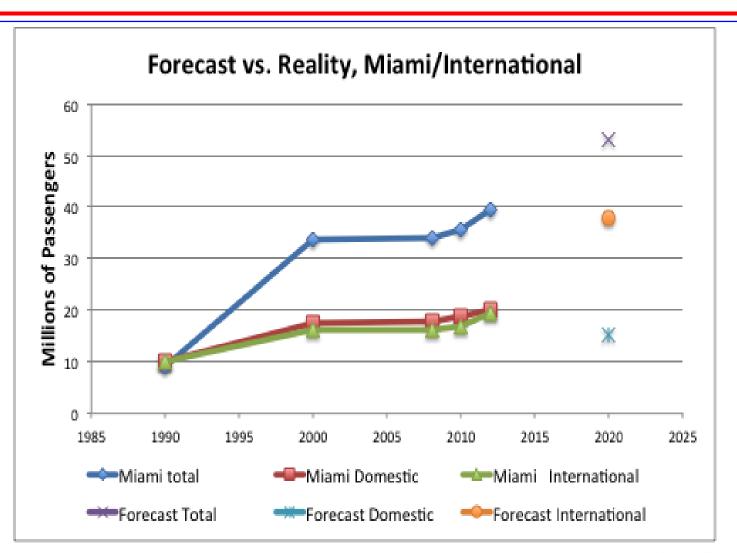
Premises

Forecasting is an Art,
 not a Science -- too many
 assumptions
 not a statistical exercise -- too
 many solutions

Forecasts are Inherently Risky

Assumptions behind any forecasting exercise

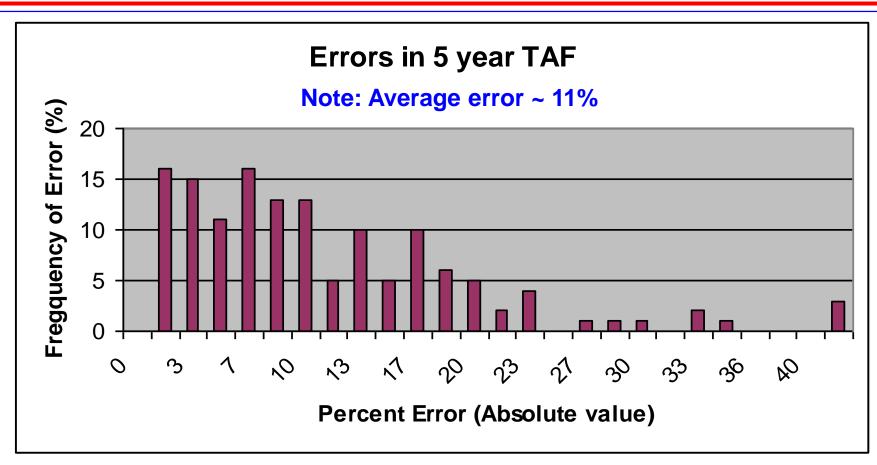
- Span of data -- number of periods or situations (10 years? 20? 30?)
- Variables -- which ones in formula (price? income? employment? etc)
- Form of variables -- total price?
 price relative to air? To ground?
- Form of equation -- linear? loglinear? translog? Logit?


Logical House of Cards

Assumptions behind any forecasting exercise

 Span of data -- number of periods or situations (10 years? 20? 30?)

Consider the Miami case...


Forecast vs. Actual Miami/International

Consider making a forecast now:

How may years of data would you include in statistical analysis?

Results of a study of TAF

Adapted from: Terminal Area Forecast (TAF) Accuracy Assessment Results Jerome Friedman, MITRE CAASD. Study dated Sept. 30, 2004, but data until 2000. Deliberate omission of 2001, 2002 – when traffic dropped enormously

Choice of variables

- Note first: The more variables you include, the better the statistics in model, the better the fit!
- Why is that?
- Because procedure for creating statistical model only includes variables to extent they improve

Common forms of forecasting equations

Linear

```
→ Pax = Population[a +b(Income)+c(Yield)...]
```

Exponential

```
Pax = {a [Yield]<sup>b</sup>}{c [population] <sup>d</sup>} {etc...}
```

Exponential in Time

```
→ Pax = a [e]<sup>rt</sup>

where r =rate per period

and t = number of periods
```

Benefits of each?

Fundamental Mathematics of Regression Analysis

Linear equations

+ Logarithm of exponential form => linear

Define "fit"

- \Rightarrow = sum of squared differences of equation and data, $\Sigma (y_1-y_2)^2$
- → => absolute terms, bell-shaped distribution

Optimize fit

- + differentiate fit, solve for parameters
- → R-squared measures fit (0 < R² <1.0)

Let's talk about meaning of correlation for a moment

- There is well-established good correlation between: (Damage at Fire) and (Number of Firemen)
- What do I conclude about how Firemen cause damage?
 - Should I send less firemen to fire?
- The correlation is "spurious":
 Big fires => damage, firemen sent
 Good Statistics ≠ Good Model !!!

Ambiguity of Results: Many 'good' results possible

- Common variables (employment, population, income, etc) usually grow exponentially ~ a(e)^{rt}
- They are thus direct functions of each other
 - $\rightarrow a(e)^{rt} = [(a/b)(e)^{(r/p)t}]b(e)^{pt}$
- Easy to get 'good' fit
 - → See Miami example (next)

Forecasts of International Passengers (Millions per Year) for Miami Int'l Airport

Forecast		Forecast	Actual
Method	Case	2020	1990
Population	Dade Co.	16.00	
	Dade/Broward	16.61	
	Dade/Broward (Non-Linear)	21.89	
Yield and Per Capita	Dade Co.	19.25	
	Dade/Broward	22.25	
Personal Income	Dade/Broward (Non-Linear)	20.31	
Time Series	Dade Co.	19.84	
	Dade/Broward	20.16	10.01
	Dade/Broward (Non-Linear)	57.61	
Per Capita Personal Income	Dade Co.	28.38	
	Dade/Broward	25.57	
	Dade/Broward (Non-Linear)	53.79	
Share (US Int'l Pax)		37.76	
Share (US Reg'l Rev.)		25.45	
	Maximum	57.61	576 %
	Average	27.49	275 %
	Median	21.20	212 %
Source: Landrum and Brown (Feb. 5, 1992)	Minimum	16.60	166 %
	Preferred	37.76	377 %

Forecasts of Domestic Passengers (Millions per year) for Miami Int'l Airport

Forecast		Forecast	Actual
Method	Case	2020	1990
Population	Dade Co.	13.96	
	Dade/Broward	15.35	
	Dade/Broward (Non-Linear)	17.74	
Yield and Per Capita	Dade Co.	19.87	
	Dade/Broward	19.69	
Personal Income	Dade/Broward (Non-Linear)	19.13	
	Dade Co.	17.41	
Time Series	Dade/Broward	18.67	9.92
	Dade/Broward (Non-Linear)	40.05	
Per Capita Personal Income	Dade Co.	26.58	_
	Dade/Broward	24.34	
	Dade/Broward (Non-Linear)	42.40	
Share of US Traffic		23.48	
	Maximum	42.40	427 %
	Average	22.97	232 %
	Median	19.69	198 %
Source: Landrum and Brown (Feb. 5, 1992)	Minimum	13.96	141 %
•	Preferred	15.35	155 %

Note Use of "preferred" forecast

- Forecasts obtained statistically often "don't make sense"
- Forecasters thus typically disregard these results substituting intuition (cheap) for statistics (very expensive)
- E.g.: NE Systems Study (SH&E, 2005)

 "The long-term forecast growth... was inconsistent with...expectations...[and] were revised to... more reasonable levels"

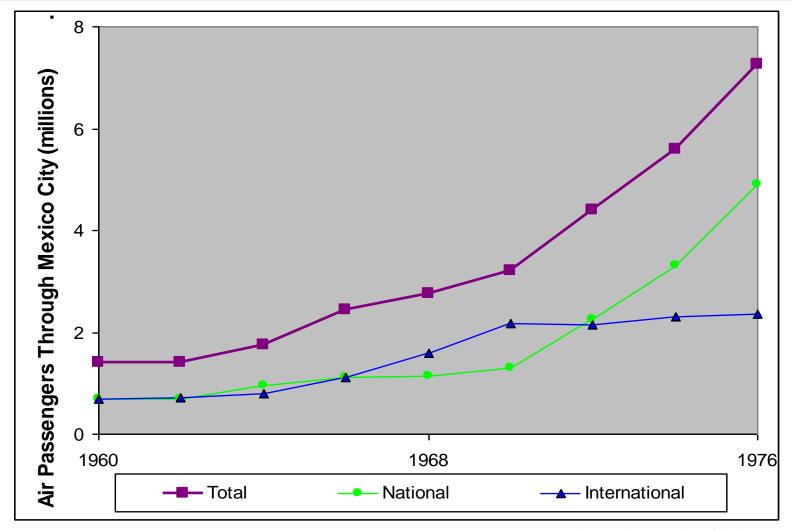
Domestic Pax for Miami update for 2010, 2014

Forecast Method and Variant		Forecast	Actual		
Method	Data Used (form)	2020	1990	2000	
	Dade Country	13.96			_
Population	Dade and Broward	15.35			
	Dade and Broward (non-linear)	17.74			
Yield and Per	Dade County	19.87			
Capita Personal	Dade and Broward	19.69			
Income	Dade and Broward (non-linear)	19.13			Γ
	Dade County	17.41			ı
Time Series	Dade and Broward	18.67	9.92	17.4	ı
	Dade and Broward (non-linear)	40.05			١
Per Capita	Dade County	26.58			١
Personal Income	Dade and Broward	24.34			١
	Dade and Broward (non-linear)	42.40			١
Share of US		23.48			
	Maximum	42.40			
	Average	22.97			
	Medium	19.69			
	Minimum	13.96			
	Preferred		15.35	I	

Actual 2010 =18.8 Actual 2014 =20.4

Miami press release, Jan 2011

- "Miami set a new all-time record for annual passenger traffic in 2011 with 35.7 million passengers"
- BUT:
- "The previous record was set in 1997 when the airport welcomed 34.5 million passengers."
- Source: http://blogs.sun-sentinel.com/south-florida-travel/2011

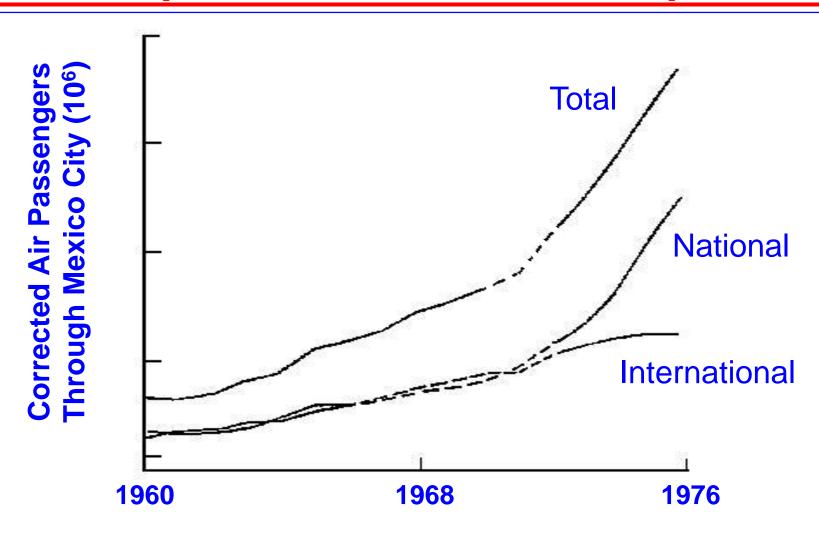

Principles for forecasting in practice

- Detailed Examination of Data
 Statistics are often inconsistent, wrong, or otherwise inappropriate for extrapolation
- Extrapolation for Short Term, About five years
- Scenarios for Long Term,
 Allowing for basic changes
- Ranges on Forecasts,
 Wide as experience indicates is appropriate

Recommended Procedure

- 1. Examine Data compare sources, check internal consistency
- 2. Identify Possible Causal Factors relevant to site, period, activity
- 3. Do regression, extrapolate for short term, apply historical ranges on forecasts
- 4. Identify future scenarios
- 5. Project ranges of possible consequences
- 6. Validate Plausibility compare with similar circumstances elsewhere

Passengers, Mexico City International Airport (AICM)

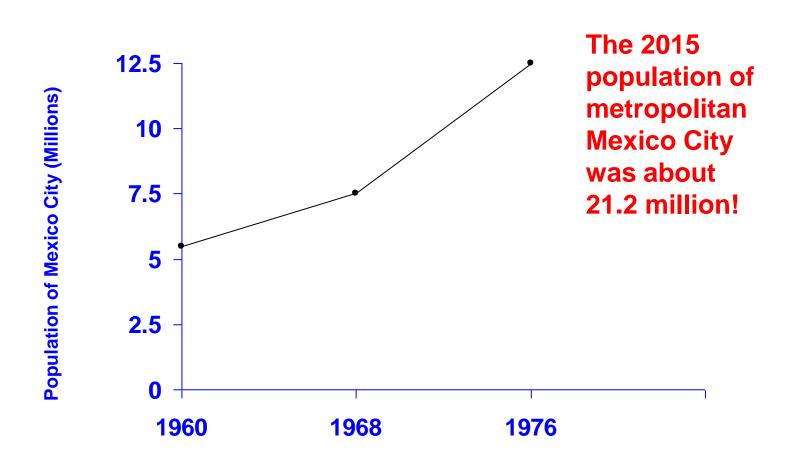


Mexico City -- Data Problems

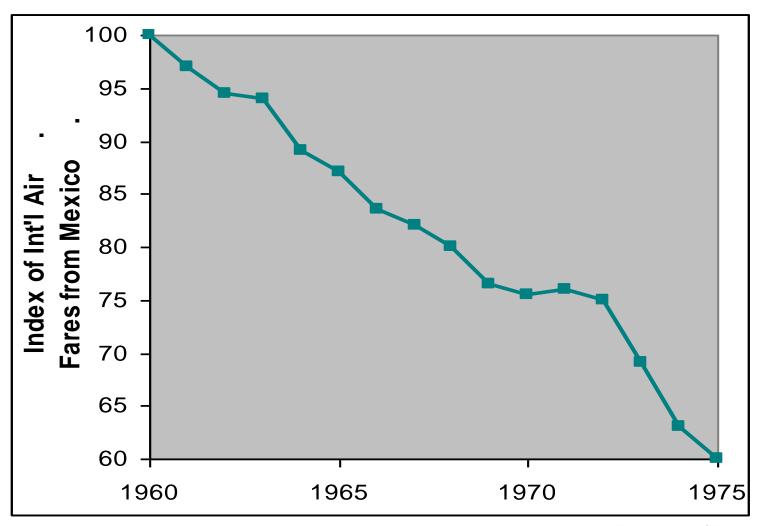
- Typographical Error
 Seen by examination of primary data (Comparable issue with Los Angeles)
- Double Counting
 Introduced in series by a new category of data
- New Definitions of Categories
 Detected by anomalies in airline performance (pax per aircraft) for national, internat'l traffic

These problems occur anywhere

Passengers Through AICM (Corrected Version)



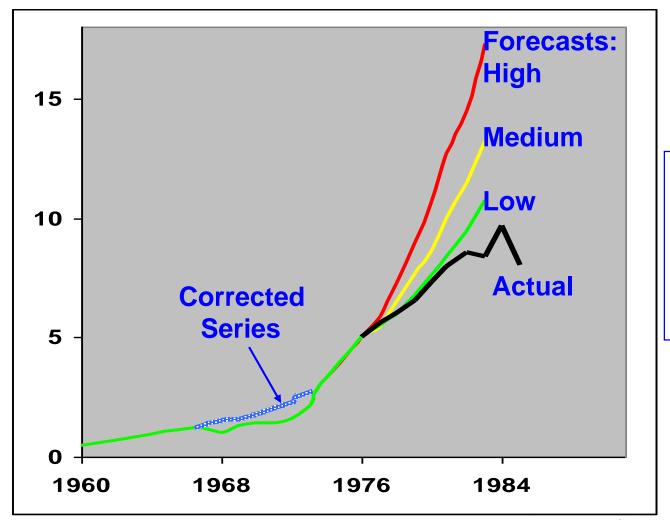
Mexico City Causes of Trends


- Economic Boom
 Post 1973 oil prosperity
- Recessions Elsewhere

 Affecting international traffic
- Population Growth
- Fare Cuts
 Relative to other commodities

Population Increase of Mexico City's Metro Area

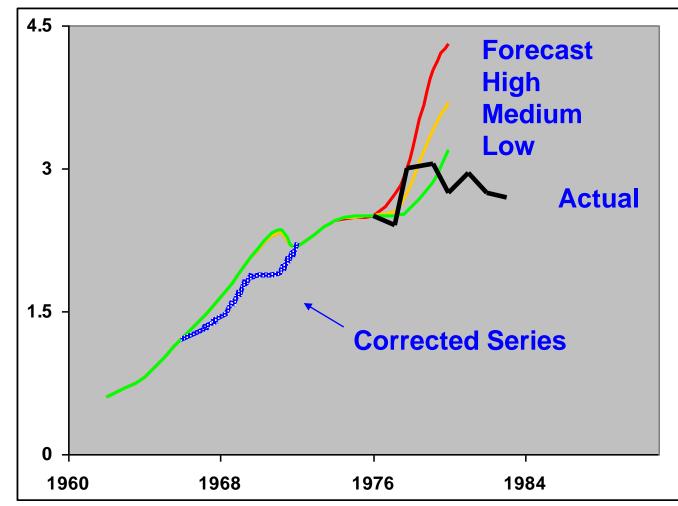
Trend of International Air Fares at Constant Prices



Mexico City -- Note

- Traffic formula based on these variables (or others) does not solve forecasting problem.
- Why?
- Formula displaces problem, from traffic to other variables.
- How do we forecast values of other variables?

Short-Range Forecasts, National Passengers, AICM


Forecast
National
Passengers
for
Mexico City
(millions)

Actual 2010 = 15.6 Actual 2014 = 23.7

Short-Range Forecasts, International Pax. AICM

Forecast
International
Passengers
for
Mexico City
(millions)

Actual 2010 = 8.5 Actual 2014 = 10.6

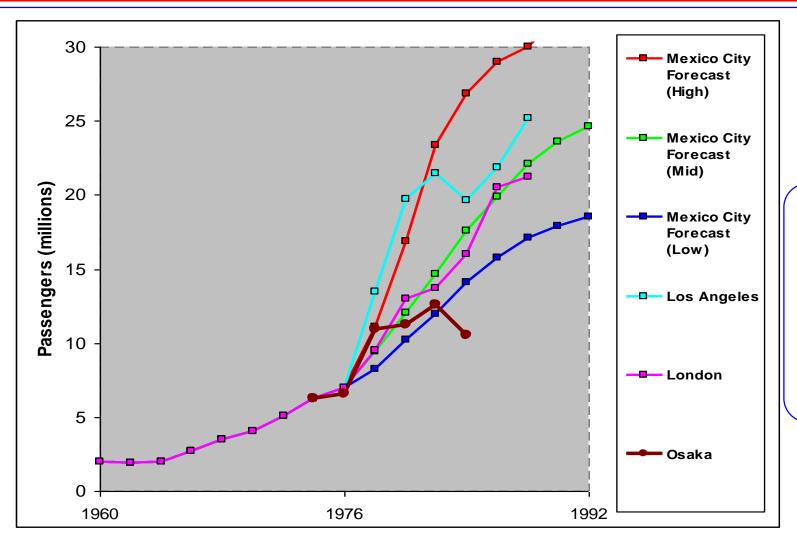
Mexico City: Elements of Longrange Scenarios

- Demographics
 - Rate of Population Increase
 - Relative Size of Metropolis
- Economic Future
- Fuel Prices and General Costs
- Technological, Operational Changes
- Timing of Saturation

Long-range Scenarios

New Markets

→ Japan, Pacific Rim, United Europe (Frankfurt, etc.)


More Competition

- Deregulation, Privatization
- > Transnational Airlines, Airline Alliances

New Traffic Patterns

- Direct flights bypassing Mexico City to go directly to tourist areas (Los Cabos, Acapulco...)
- More Hubs (Bangkok, Seoul?)
- New Routes, such as over Russia

Long Term AICM Forecasts, validated by data elsewhere

Actual 2010

=24.1 M

Actual 2014

=34.3 M i

Summary

- Forecasting is not a Science
 - + too many assumptions
 - + too much ambiguity
- Regression analysis for short term
 - Apply historical ranges on projections
- Scenarios for Long range
 - → compare with experience elsewhere
- STRESS UNCERTAINTY